Development of eSSR-Markers in Setaria italica and Their Applicability in Studying Genetic Diversity, Cross-Transferability and Comparative Mapping in Millet and Non-Millet Species
نویسندگان
چکیده
Foxtail millet (Setariaitalica L.) is a tractable experimental model crop for studying functional genomics of millets and bioenergy grasses. But the limited availability of genomic resources, particularly expressed sequence-based genic markers is significantly impeding its genetic improvement. Considering this, we attempted to develop EST-derived-SSR (eSSR) markers and utilize them in germplasm characterization, cross-genera transferability and in silico comparative mapping. From 66,027 foxtail millet EST sequences 24,828 non-redundant ESTs were deduced, representing ~16 Mb, which revealed 534 (~2%) eSSRs in 495 SSR containing ESTs at a frequency of 1/30 kb. A total of 447 pp were successfully designed, of which 327 were mapped physically onto nine chromosomes. About 106 selected primer pairs representing the foxtail millet genome showed high-level of cross-genera amplification at an average of ~88% in eight millets and four non-millet species. Broad range of genetic diversity (0.02-0.65) obtained in constructed phylogenetic tree using 40 eSSR markers demonstrated its utility in germplasm characterizations and phylogenetics. Comparative mapping of physically mapped eSSR markers showed considerable proportion of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (~68%), maize (~61%) and rice (~42%) chromosomes. Synteny analysis of eSSRs of foxtail millet, rice, maize and sorghum suggested the nested chromosome fusion frequently observed in grass genomes. Thus, for the first time we had generated large-scale eSSR markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.
منابع مشابه
Genome-Wide Development and Use of Microsatellite Markers for Large-Scale Genotyping Applications in Foxtail Millet [Setaria italica (L.)]
The availability of well-validated informative co-dominant microsatellite markers and saturated genetic linkage map has been limited in foxtail millet (Setaria italica L.). In view of this, we conducted a genome-wide analysis and identified 28 342 microsatellite repeat-motifs spanning 405.3 Mb of foxtail millet genome. The trinucleotide repeats (∼48%) was prevalent when compared with dinucleoti...
متن کاملFusarium Species Associated with Foxtail Millet (Setaria Italica) in Iran
Objective: Fusarium diseases that cause grain mold and stalk rot of millet are the most important diseases, of these crops in Iran. Fusarium can cause stalk rots, ear rots, and grain mold, resulting in serious production losses in millet, and produce mycotoxins that are harmful to both humans and domesticated animals. Methods: A total of 23 Fusarium isolates were rec...
متن کاملDevelopment of Simple Sequence Repeats (SSR) Markers in Setaria italica (Poaceae) and Cross-Amplification in Related Species
Foxtail millet is one of the world's oldest cultivated crops. It has been adopted as a model organism for providing a deeper understanding of plant biology. In this study, 45 simple sequence repeats (SSR) markers of Setaria italica were developed. These markers showing polymorphism were screened in 223 samples from 12 foxtail millet populations around Taiwan. The most common dinucleotide and tr...
متن کاملFusarium Species Associated with Foxtail Millet (Setaria Italica) in Iran
Objective: Fusarium diseases that cause grain mold and stalk rot of millet are the most important diseases, of these crops in Iran. Fusarium can cause stalk rots, ear rots, and grain mold, resulting in serious production losses in millet, and produce mycotoxins that are harmful to both humans and domesticated animals. Methods: A total of 23 Fusarium isolates were rec...
متن کاملDevelopment of 5123 Intron-Length Polymorphic Markers for Large-Scale Genotyping Applications in Foxtail Millet
Generating genomic resources in terms of molecular markers is imperative in molecular breeding for crop improvement. Though development and application of microsatellite markers in large-scale was reported in the model crop foxtail millet, no such large-scale study was conducted for intron-length polymorphic (ILP) markers. Considering this, we developed 5123 ILP markers, of which 4049 were phys...
متن کامل